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Alternating direction implicit and locally one dimensional methods are considered for 
the solution of a heat equation with constant coefficients, detking the heat flow in a 
thermal print-head. One of the boundary conditions is unusual in that it constitutes the 
solution of a heat equation in two space variables in which a heat source is discontinuous 
in the space and time variables. Several numerical examples are considered to study the 
behaviour of the difference schemes as a result of these discontinuities. 

I. INTRODUCTION 

The rapid development of modern technology and engineering has brought 
with it physical problems of a very complex nature. These physical problems in 
turn give rise to mathematical models of such complexity that analytical means of 
deriving solutions are nearly always impossible. Hence, the numerical techniques 
devised over recent years have come to play an important role in determining 
solutions to the physical problems that arise. Moreover, in some cases, numerical 
procedures have been devised for mathematical models for which existence and 
uniqueness proofs have been lacking; for example, the general Navier Stokes 
equations (see, for example, Scala and Gordon [23] and Thommen [24]). A similar 
situation exists with regard to the problem which is to be considered in this paper. 
There have been (to the author’s knowledge) no existence or uniqueness proofs in 
the literature for the mathematical model we shall consider. 

The physical problem consists of determining the flow of heat in a thermal print 
head subject to a discontinuous heat source which is generated in a thin film 
deposited on the surface of a glass substrate. The description of the problem and 
its associated mathematical model are given in Section II. In Section III the differ- 
ence schemes for the solution of the heat equation in the glass substrate are dis- 
cussed. In Section IV the difference schemes for the solution of the heat equation 
in the thin film are considered. Section V presents the results of some numerical 
experiments using the methods outlined in Sections III and IV. The paper is con- 
cluded in Section VI with a discussion and explanation of the numerical results. 
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II. THE PHYSICAL PROBLEM AND ITS ASSOCIATED MATHEMATICAL FORMULATION 

The thermal print head is a matrix of thin film heating resistors deposited on a 
glass substrate. The surface of the glass and resistors is covered with a thin film of 
a good heat conducting material. Details of the matrix are given, from a top-view, 
in Fig. 1. Fig. 2 describes a single element of the matrix from a side-view. 

\ HEATING 
RESISTOR 

FIG. 1. A 5 x 5 matrix thermal print head (top view). 

THIN / /HEATING ‘GLASS 
FILM RESISTOR SUBSTRATE 

FIG. 2. A single element of the matrix (side view). 

When electrical current is passed through a heating resistor, it heats the thin 
film matrix element directly above it. By passing heat-sensitive paper over the 
matrix at a prescribed rate, characters can be generated on the paper by passing 
current through different combinations of the heat resistors. The heat-sensitive 
paper has a threshold temperature; above it, a chemical reaction in the paper takes 
place and the characters are formed, and, below it, the paper is left “clean.” When 
one character has been completed, the current is switched off and the heat flows 
through the glass substrate. With a rapid switching of the heat sources, a build up 
of heat will occur in the substrate, unless sufficient time is allowed for the heat to 
dissipate. It is this problem of heat generation and heat flow that we wish to con- 
sider in the present paper. 

We shall consider the heat flow in a single element of the matrix; that this is not 
restrictive will be discussed in Section VI. The mathematical model describing the 
physical problem was originally formulated by Chen [4]. This formulation assumes 
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the thickness of the thin film to be so small in comparison with that of the glass 
substrate, and the thermal conductivity coefficient for the thin film to be sufficiently 
high so as to make the temperature gradient in the vertical direction negligible. If 
we represent the vertical direction in a Cartesian co-ordinate system (x, y, z, t), 
this effectively means that the thin him has no dimension in the z coordinate other 
than to give it thermal capacity due to a thickness A, say. 

The heat equation governing the heat distribution in the thin film is then ([4J) 

au -- - K apu a% 
at= pi axa + ay ( 1 

x {H(x - a) - H(x - 2b)}{H(y - a) - H(y - 2b))J - 5 (u - @xi), 

where H(8) is the Heaviside function defined by 
(1) 

e < 0, 
e > 0, 

u = u(x, y, 0, t) denotes the temperature in degrees centigrade at a point (x, y, 0, t) 
in the thin film, K is the thermal conductivity, p the density, c the specific heat of 
the thin film, u, is the ambient temperature. q is the heat generated in watts per 
unit volume, h, is the convective heat transfer coefficient between the thin film and 
air (see, for example, Carslaw and Jaeger [3], p. 15), to (>O) is the value of the 
time at which the power is switched off. (The form of the heat source term arising 
from several switchings of the heat source can be expressed in terms of Heaviside 
functions; the exact form is obvious and will be omitted.) The heating resistor is 
defined as the square {(a, a) < (x, y) < (2b, 2b)}, where a + 2b = 8, the side 
length of the print head. 

The initial condition u(x, y, 0,O) = f(x, y, 0), 0 < x, y < 4 and the boundary 
conditions au/an = 0, x = 0, 4 0 < y < J, y = 0, 4 0 < x < Z, are given for 
Eq. (l), where n is the outward drawn normal to the edges of the thin film andfis 
a continuous function. We assume continuity of initial and boundary conditions. 

The region in which the solution is required is defined by 

i?=Rx[O<r<T], 

where R = {(x, y, z); 0 < x, y, z < d}, 
and we denote the boundary of W by @ so that the solution of Eq. (l), with initial 
conditions and boundary conditions, constitutes a boundary condition on a&, 
for the total print head. 

The equation governing the temperature distribution u in the glass substrate is 

(3) 
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subject to the initial condition 

u(x, y, z, 0) = f(x, y, 4, 0 d x, Y, z < e 

and the boundary conditions 

au - = 0 on ZJR,,,, , 
an 

and a&.,., 

(4) 

u(x, y, 8, t) = g(x, y, &, r), and u(x, y, 0, t) is the solution of Eqs. (1) and (2) on 
~L.0 9 respectively. K 1 , p 1 , c1 are the conductivity coefficient, density, and 
specific heat, respectively of the glass. g is a given continuous function. The print 
head has been assumed a cube for programming convenience; the results are true 
for any rectangular shaped print head. 

Thus, our problem constitutes a linear second initial-boundary value problem 
with constant coefficients in three space variables with one of the boundary con- 
ditions given by the solution of a semilinear second initial-boundary value problem 
of lesser degree which contains a discontinuous heat source. (For definitions of 
these terms, see Friedman [12]). 

III. THE DIFFERENCE SCHEMEB IN THREE SPACE VARIABLES 

In this section we shall consider difference methods for the solution of the heat 
Eq. (3), together with the initial and boundary conditions (4) and (5). The diffe- 
rence schemes to be considered will be of two distinct types, namely, Alternating 
Direction Implicit (A.D.I.) methods of the kind first introduced by Peaceman and 
Rachford [ZO] in 1955, alternatively formulated by Douglas and Rachford [8] in 
1956, and the Locally One Dimensional (L.O.D.) methods introduced by Yanenko 
[25] and discussed by D’Yakonov [5], Samarskii [22], and more recently by 
Fryazinov [12]. (See also the references contained in these papers.) 

Before discussing these schemes, it will be convenient to present the notation 
which we shall use. A rectilinear grid is superimposed on the region of computation 
i?, where the mesh spacings in the space directions are taken equal; namely, 

Ll, = A, = A, = h, 

and the mesh spacing in the time direction d, is denoted by T. We shall assume the 
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mesh ratio r/h2 to be constant and equal to r. We denote by u, = u$ , the value 
of the unknown function u at the point (ih, jh, kh, rn~) = (x, y, z, t) for 

i,j, k = 0, l,..., N; Nh = 8, and m = 0, 1, 2 ,... . 

The difference operators 6,) 6, and 6, are the usual central difference operators, 
where 

and similar expressions for 6, and 6, . 

III. (a) THE L.O.D. SCHEME OF ACCURACY ha + ? 

It may be easily verified that an order (ZS + G) accurate approximation to 
Eq. (3) is given by 

u+ /mv+ Pv(z+ m&n+, = v- Pww- PW- CLWII, + &+l,m, 

(6) 
where u,+r and u, are the vectors of the unknown temperatures, for 

i,j, k = 0, l,..., N. r Kl 
P’=ZX’ 

The vector g,,,,,,, contains the values of the function u occurring as a result of the 
difference scheme, in the local sense, being applied to points adjacent to boundary 
points; that is, &n+l,m contains boundary values from mr and (m + 1) T. Z is the 
unit matrix of order (ZV + 1)3. The matrices W, V, and U arise from the representa- 
tion of the boundary conditions in difference form and the difference operators 
aza, ay2, and aze, respectively, which appear in the local representation of the partial 
differential equation, namely 

(1 - /-A2)(1 -p&w - ph2> hn,, = (1 + P&w + 4,2)(1 + PSzZ) urn - 

The particular forms of W, V, and U may be easily shown to be 

w = WN,l 0 IN+1 0 &+19 
v = IN+1 0 VN,l 0 L+1 9 
u = &+I. 0 &+1 0 f-Jhvl9 
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where ZN+1 is the unit matrix of order N + 1 and the matrices W,,, , V,,, , and 
u N+l are of order N + 1 and defined by 

. 

. 

0 

. 

. . 

-1 2 -1 

0 2 

0 

. 

. . 

.1 2 -1 

-2 2 

and @ is the usual tensor product (see, for example, Halmos [17]). It will be 
noticed that the particular form of the matrices comes about from the particular 
form of the boundary conditions. The fact that VN+r equals U,,, plays a significant 
part in the analysis which will be presented. 

In order to solve Eq. (6) for the unknown vector b, , the equation has to be 
split into equations of simpler form. The first splitting of Eq. (6) we shall consider 
will be the L.O.D. scheme. Consider the factorization of Eq. (6) given by 

(Z+pWv;,*:, = (I-pU)v, + b,, 

where the symbols (*) and (**) indicate intermediate solutions. The vectors 
4, b, and b8 contain contributions (as yet undetermined) from the boundary value 
elements contained in the vector g,,,+l,m. The relationship between the vectors v 
and the solution u will become apparent after a little further analysis. This analysis 
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is an obvious extension to three space variables of results presented by Gourlay 
and Mitchell [15]. 

On elimination of the two intermediate levels (*) and (**) from equations (7), 
(8), and (9), we obtain 

v:;, = (I+ pU)-YZ - pU) v, + (I + pU)-‘b, , 

v’,*,*,’ = (I+ pV)-l(Z - p V) vgil + (I + @‘)-lb, , 

= (I + pV)-l(Z - pV)(Z + pU)-‘(I - $7) v, 

+ (I+ PVV>-W, + (I- pV)(Z + $‘)-%I, 

V + PW v,+~ = (I- pW ~2;) + b, , 

= (I - p W)(Z + pV)-yz - pV)(Z + /AU)-yz - /AU) v, 

+ 4 + V - I-L WV + p W[bz + (I - pV)(Z + pU)-%I. 
(10) 

Putting bI = b, = 0, Eq. (10) becomes 

(1 + CL w vm+1 = (z-~~w)(z+E.L~)-l(z-~~)(z+~u)vn+~’ (11) 

Since UN,, = V,,, , U and V commute and, hence, (Z + pV)-’ and (Z - pU) 
commute. Thus, Eq. (11) can be written in the form 

v+ PWVm+1 = V - CL W(Z - p VW - pu)(Z + CL V-l (I+ pUF1 vm + b, . 

(12) 
On introducing the transformation 

(I + pV)-l (Z + pU)-1 v, = 0, , 

Eq. (12) can then be written as 

v+ /-WV+ llw+ 494+1 = (Z--CLW)(Z--VV)(Z--U)U,+~~, 03) 

where we have once again used the commutativity property mentioned earlier. We 
see that Eqs. (6) and (13) are equivalent if 4 is chosen equal to gnz+r,m . Hence, an 
L.O.D. splitting which is O(Ztz + T”) accurate is 

UipU)v~~:, = (I-pwv,, 

(z+pv)v;;;’ = (z-pcIv)v~~l, (14) 

(1-t Pmin+, = v- Pw>T!ii' + i%n+l.m~ 
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together with the transformation 

(Z+pV)-‘(Z+pU)-lvm = IL. (15) 

This approximation (6) split in the form (14) and (15) is to be preferred, on the 
grounds of computational efficiency, to the O(ZP + TV) scheme 

(I+ PW + PVV + PWbn,l = (1 - P w - P w - P Jv u, + &n+1.m 3 

(16) 
split in the form 

(z+pw)v&+$ = (I-pW)v,, 

(I + pV) v$y = (I - pV) Q$, (17) 

(1 + /-a v,+1 = (I- PU) vk*+*1) + (1 + Pv-l&,+l,, 9 

together with the transformation 

u, = (z+pW)-lVm. (W 

[That {(17), (WI is equivalent to (16) can be proved by a similar analysis used 
to prove the equivalence of {(14), (15)) and (6).] Equation (17) requires the 
inversion of one operator only at the transformation stage of the calculation, 
whereas Eq. (14) requires the inversion of two operators in (15). However, the 
final equation of (17) requires the inversion of the operator (I + Z.LV) each time it 
is used, whereas Eq. (14) does not. The more efficient scheme is determined by the 
fact that the transformations need to be carried out only at the print-out stage of 
the computation [15], and assuming one does not print out the solution every time 
step, the number of inversions carried out in the first splitting can be considerably 
less than that in the second one. 

III. (b) THE A.D.I. SCHEME 

In [9], Fairweather and Mitchell introduced A.D.I. methods which were 
O(h2 + T”) accurate for a heat equation with constant coefficients in three space 
variables. This scheme, however, suffered from the severe stability condition 
r < 11/12. In [Ill, Fairweather, Gourlay, and Mitchell introduced a scheme 
which was again O(h* + 7”) accurate but which was unconditionally stable (r > 0). 
Various splittings for this method have been proposed. We prefer, in this problem, 
to use the D’Yakonov splitting [6] owing to its simplicity, although computation- 
ally it is the least efficient of the available A.D.I. splittings; see [7] and [16]. (The 
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justification for having chosen this particular factorization will become clear in 
the discussion in Section VI.) 

The particular factorization referred to is 

(21) 

where p = K,r/(2p,c,). 
All the schemes discussed in Section III are unconditionally stable. 

III. (c) INCORPORATION OF BOUNDARY CONDITIONS 

The effects of the incorrect incorporation of boundary conditions at the inter- 
mediate levels when the boundary conditions are time dependent, has long been 
well-known (see, for example [6], [lo]). The boundary condition at z = 0 in the 
current problem is certainly time dependent. It would appear, therefore, that we 
have to take care in the method of incorporating the intermediate boundary 
conditions. Fairweather and Mitchell [lo] and Gourlay and Mitchell [14] presented 
techniques for incorporating intermediate boundary conditions for the local 
difTerence schemes. However, by considering the difference method globally, as we 
have done here, the difficulty is automatically taken care of. That is, the choice of 
the vectors b1 , b, , b8 , in terms of the vector gm+l,m , has ensured no loss of 
accuracy due to incorporation of boundary conditions since the elimination of the 
intermediate levels yields the original unsplit scheme (6). 

IV. THE DIFFERENCE SCHEMES IN Two SPACE VARIALBES 

We will now consider finite difference schemes for the solution of Eq. (1) and 
the associated initial and boundary conditions (2). Owing to the complicated form 
of the source term, we prefer to consider Eq. (1) in the form 

azu - - 
+ aya + S(u, & Y, 0, (22) 

where S can be any general source term. This will enable us to generate methods 
which will cover nonlinear source terms other than the specific one defined in 
Eq. (l), yet, which will generate, simply, the solution for a source term which is 
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linear in II. Since S is a function of the unknown variable, u, we will require a 
predictor formula in order to attain 0(h8 + 9) accurate methods. A previous 
method proposed for Eq. (22) has been given by Albrecht [I]. There, an iteration 
process was introduced to determine an approximation to u which was used in the 
source term. A Peaceman Rachford factorization was used and no mention of 
intermediate boundary conditions was made. We propose to use a scheme which 
is computationally less time-consuming. Throughout, we will use the predictor 
formula 

u;$ = u,,, + br(Klpc(@,,, + $2u,) + h%,J, (23) 

where b is subsequently to be determined, and where u,,, = r&, . 

IV. (a) THE L.O.D. SCHEME IN Two SPACE VARIABLES 

We propose the L.O.D. scheme written locally as 

together with Eq. (23). S,&, = S[(l - &x2) z& , ih,jh, (m + 4) T]. 
Eliminating the (*) and (1) levels in (24) and expanding the resulting expression 

using Taylor series in terms of U, and its derivatives, and finally using Eq. (22), 
it may be shown that 

y = T? 01 = /3 = Kr/(2pc), b = 4, 

in order that Eq. ((23), (24)) be o(h* + 9) accurate, where we have used the fact 
that the difference operators 6x2, 6~” commute. Theoretically, the solution is now 
possible when the usual difference form of the derivative boundary conditions are 
included. However, in practice, we are faced with the problem that .!&,, will 
depend upon the values of z& outside the region of computation. This problem 
could be resolved using a ‘boundary-inversion’ technique similar to that outlined 
in [16] for hyperbolic systems; but this complicates matters. Since the problem we 
consider has the function S defined to be nonzero between the stipulated limits 
[see Eq. (l)], we could solve the problem by noting that the values of the function 
uzl required outside the region in which S was nonzero have been calculated, and 
in this particular case there is no problem. However, as we stated at the beginning 
of this section, we require to be as general as possible in dealing with the source 
term S and will, therefore, attempt a method of solution which does not have any 
draw backs outlined above. 
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The basis of this approach is that, independent of the region of definition of S, 
the matrices that arise in the global representation of (24); namely, 

v = VN,l 0 IN+1 9 
0 = L 0 UN,, 9 

wh= &+1, VN, and Ll are defined in Section III.(a), commute. That is, 
Z + ar0 and Z - jIP commute. We can, therefore, apply the more usual form of 
elimination of the intermediate level as follows: 

We represent the L.O.D. scheme globally as 

v+ 0 I$$ = (I- go> urn , 

(If an urn+, = (Z - Iso $+;I + Tq&, 
where 

%,2 = w&, Wh, (m + &IT); (Y = fi = Kr/(2pc) and y 

is as yet undetermined. If we eliminate the intermediate (*) level, using the fact 
that 0 and V commute, we obtain 

u+ 4@+ aP)u,+l= (Z - ~Qo( - pq a, + (I+ 4 ys!& - (26) 

If (26) is now expanded in terms of Taylor series, it may easily be seen that in order 
that (26) be accurate to order (P + 9), 

y = 7(Z + aD)-l. 

Hence, the scheme we propose is 

v+ ~o,U~~, = (Z-p%,, 

(Z + aV) um+l = (Z - gv, u;y, + Tw::l,e , 
where 

$1) 
m+1/8 = (I + a 0)-l Sz;l,e . 

IV. (b) A.D.I. SCHEMES IN 2 SPACE DIMENSIONS 

These schemes are the Fairweather-Gourlay-Mitchell scheme mod&d to cope 
with the source term S. The o(Zz* + 9) scheme is readily shown to be 

where a = p = Krj(2pc) yields the O(ha + 9) A.D.I. scheme. 
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IV. (c) BOUNDARY CONDITIONS 

Since the normal boundary conditions are given to be zero for the two dimen- 
sional problem, no inhomogeneous terms are present. Hence, if we were to intro- 
duce a vector g,,,+l.nz similar to Section III, all its entries would be zero. For this 
reason we have omitted such a vector. If the need arose, it could be incorporated 
in an obvious manner. 

We finally note in this section that the difference schemes discussed have been 
unconditionally stable (r > 0) using the usual stability analysis for the difference 
schemes in the local sense (see, for example, Richtmyer and Morton [21]). This is 
also true in the global sense when the particular form of the matrices U, V, and W 
are considered as a result of the introduction of the mixed Neumann and Dirichlet 
boundary conditions (Keast and Mitchell [19]). 

V. NUMERICAL RESULTS 

A series of numerical experiments was carried out in order to test the behaviour 
of the difference schemes discussed in Sections III and IV. It has been reported by 
Chen [4] that the incorporation of a source term which contained a discontinuity 
in time could lead to the propagation of large errors after the heat source was 
switched off. In the report [4], the author claimed a necessity to reduce the mesh 
size in the region of the switch-off in order to prevent such error growth. We, 
however, feel that such errors propagated from an incorrect introduction of 
boundary data and that by incorporating the intermediate boundary data in a 
manner outlined in Sections III and IV, the dilIerence schemes do not lose accuracy 
or suffer from the reported error growth despite the switch-off of a large heat 
source or the frequent switching of the current. In [15] Gourlay and Mitchell 
showed the equivalence of the L.O.D. schemes and the A.D.I. schemes in two 
space variables under the transformations mentioned above. The use of the two 
types of methods is, therefore, two-fold. First, the two independent schemes give 
a check on the numerical results obtained in the case where no theoretical solution 
is known. Second, the equivalence of the two types of schemes can be checked on a 
physical problem, and assuming the equivalence to be borne out, the choice of 
method reduces to one of efficiency and ease of use. 

V. (a) A PROBLEM W~H A CONSTANT HEAT SOURCE (T, = co) wmf A KNOWN 
THBORETICAL SOLUTION 

To test the schemes under ideal (model) conditions, we constructed a problem 
for which we were able to determine a theoretical solution. Under these conditions, 



220 MORRIS 

we could check the equivalence of the schemes and also determines the accuracy of 
the methods. A solution to Eq. (3) with the associated initial and boundary condi- 
tions was found to be 

u= 
( 

eYt ~sEcosITy+-q 1 -Z + $tcosJE cos ?TYc&TE 
G G ,“,)C A e G ,,(3o) 

where 

Y= 
2dK, 

-G’ 
h-2, A= hoe2 

2+$- -+’ 

and where the initial condition associated with this particular solution is obtained 
by putting t = 0 in the expression (30). U, was taken equal to zero, and the bound- 
ary condition U(X, y, /, t) = g(x, y, /, t) taken equal to 0 for all time. For z = 0 
in (30), the solution in the thin film is obtained. We have taken a = 0 and 2b = 6’ 
in Eq. (1). (The analysis for the derivation of the solution (30) has been omitted in 
order to keep the analysis to a minimum.) 

The results of computations using 

(a) The A.D.I. schemes in two dimensions and three dimensions and 
(b) The L.O.D. scheme in two dimensions and three dimensions are quoted in 

Tables I and II. 

TABLE I 
Maximum error at 100 time steps in the thin fdm (!I = 0.1) 

r A.D.I. scheme L.O.D. scheme 

0.1 1.88 x lo-4 1.88 x lo-’ 
0.3 5.3 x 1w 5.3 x 1w 
0.6 9.6 x lo-’ 9.6 x lo”” 
1.0 1.42 x W3 1.42 x l(r 

TABLE II 
Maximum error at 100 time steps in the glass substrate (/J = 0.1) 

r A.D.I. scheme L.O.D. scheme 

0.1 6.14 x lo-’ 6.14 x lo-” 
0.3 1.69 x l(r 1.69 x 1O-J 
0.6 2.98 x 1oJ 2.98 x 10-s 
1.0 4.22 x l(r 4.22 x 1v 
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The errors in Tables I and II correspond to the points at which the solution (30) 
took on its maximum values in the thin film and glass, respectively. The equivalence 
of the L.O.D. and A.D.I. schemes is evident. Henceforth, we will quote only those 
results obtained from the A.D.I. scheme, although the results were obtained for the 
L.O.D. method as well. 

V. (b) A PROBLEM WITH A DISCONTINUOUS HEAT SOURCE 

Having tested the programmes for the finite difference schemes in which the 
differential equations were well behaved, a problem was considered with a dis- 
continuous heat source, namely, the heat source initially on, was switched off after 
t,, set had elapsed. A solution covering the whole print head was not found. 
However, a solution in the thin hlrn was derived for all time. The initial conditions 
for the whole block were then given so that no inconsistency arose between the 
glass and thin film. The solution for Eq. (1) with uro = 0 and a = 0,2b = G was 

u = $q(L - e ~(~--to))[l - f@ - to)] + cos E. cos ZY &+(2on*/m, 
k e (31) 

0 

where 

ho and 
K 

*=-pzd iJ=-. 
PC 

The initial condition for Eq. (31) is 

u LO 
A 

= I, q(l - e+) + cos F cos y , 

where we have assumed to > 0. The details of the derivation will be omitted but a 
check is obtained by differentiating Eq. (31) and using the fact that 

s(t - lo) ev+V = 0 

(see Jones [18]), where 6 is the Dirac delta function. 
The initial condition which was chosen consistent with Eq. (32) [the equation 

reduced to (32) on substitution of z = O] was given by 

Ul fy = '+ q(1 - e-v&) + cos 7 cos T 
I 

1 _ 4 

0 II A 

(33) 
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This initial condition in the glass allows a genuine growth (decay) in the glass 
owing to the term cos(~x/e> cos(&!‘) sin(nz/e). The boundary condition 
U(X, y, e, t) was chosen to be zero for all time. The errors in the thin film for various 
values of the mesh ratio and heat source q are given in Table III for t = to - T, 
t = to + T and t = 1007. r,, was chosen to be 41 time steps. 

TABLE 111 
Maximum Errors in the Thin Film (h = 0.1) 

9 r t=te-7 t=t0+7 t=100+ 

1.0 1.0 1.24 x lo-‘ 1.30 x lo-’ 2.79 x lo-’ 
1.0 10.0 1.24 x 10-a 1.30 x 10-S 3.09 x 10-J 

100.0 1.0 1.24 x lo-’ 1.30 x lo-’ 3.10 x 10-d 
100.0 10.0 1.24 x 10-J 1.43 x 10-a 3.16 x 1O-a 

loOoO.o 1.0 1.24 x lo-‘ 1.30 x lo-’ 3.10 x 10-d 
100oO.o 10.0 1.24 x 1O-s 1.40 x 10-8 1.58 x lo-* 

The large heat source q = 10’ is probably not physically realistic (such a large 
input of heat would probably melt the heat resistor!). However, in the test runs 
such a case shows up the capability of the difference scheme to represent accurately 
a solution, even when a very large jump in the differential equation was present. It 
took a large value of r, namely r = 10.0, to show up any substantial increase in 
the error; this being a factor of 10 worse than before the discontinuity. No in- 
crease, however, took place after the jump, as can be seen from Table III. 

V. (c) A DISCONTINUOUS HEAT SOURCE PROBLEM WITHOUT 
A THEOREIEAL !%ILIJTlON 

We required to study the behaviour of the thermal print head under conditions 
similar to those experienced in practice; namely, starting initially with a constant 
(room) temperature and the heat source instantaneously switched on at t = 0. We 
then left the heat source on for a time, studied the build up of temperature in the 
thin film, and the (slower) build up in the glass substrate. The heat source was then 
switched off and again the heat dissipation was studied. The results of the com- 
putation carried out for a thousand time steps are given in Fig. 3. u,, was taken as 
zero and hence the initial temperature distribution in the print head was also zero. 
The boundary condition U(X, y, 4, t) was given to be zero. The graphs represent 
the temperature at a fixed point (x = y = /I;?) for all time 0 < t < 1000~ at 
several values of 2. 
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FIG. 3. Graphs of temperature distribution in thermal print head for a single switch-off of the 
heat source. 

V. (d) MULTIPLE SWITCHINGS OF THE HEAT SOURCE 

The next set of experiments to be curried out comprised multiple switch&s (on 
and off) of the heat source. In this way, we endeavoured to study the build up, or 
otherwise, of the temperature in the glass substrate as a function of the printing 
cycle. The results of the computations are presented in Figs. 4, 5, and 6, where the 

(1) THIN FILM TEMPERATURE 
20 

(2) FIRST LAYER GLASS 
16 (3) SECOND LAYER GLASS 

-- 
_----- 

2. _- 

_--- 
_---- 

__---- 

(3) 

Dm 
10 20 30 40 50 60 70 a0 90 100 t 

FIG. 4. Graphs of temperature distribution in thermal print head for a printing cycle of 4~; 
the heat source being on for 27 and off for 2~. 
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printing cycles were 4, 10, and 207, respectively, the cycle being divided equally 
between “on-time” and “off-time”. Figure 7 shows the results for a 207 cycle where 
the on-time was 5~ and the off-time 15s. 

UI 
22. (l),(Z) and (3) as for FIG. 4 

o- 4 
10 20 30 40 50 60 70 80 90 100 t 

FIG. 5. Graphs of temperature distribution in thermal print head for a printing cycle of 107; 
the heat source being on for 5~ and off for 5s. 

Uk (l).(Z)and (3)~ for FIG.4 

FIG. 6. Graphs of temperature distribution in thermal print head for a printing cycle of 20~; 
the heat source being on for 10~ and off for 10~. 

The general rise in temperature in the glass substrate for increasing time is 
apparent from Figs. 4, 5, and 6. By reducing the “on-time” in comparison with the 
“off-time,” it can be seen from Fig. 7 that the temperature rise in the substrate is 
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slower, that is lower, and a steady state temperature is reached at 2007. Thus, by 
altering the ratio of “on-time” to “off-time”, one gains an additional parameter (to 
the physical constants of the materials in the print head) in order to control (and 
prevent) the build up of temperature in the glass substrate. 

(l).(Z)and (3) as for FIG 4 

FIG. 7. Graphs of temperature distribution in thermal print head for a printing cycle of 20~; 
the heat source being on for 57 and off for 1%. 

It is interesting to note the slight fluctuation in the thin film temperature (which 
we will denote by U, for the present purpose of identification), as shown in Figs. 4 
and 5. There is a correlation between U, and the temperature of the uppermost 
layer in the glass substrate (which we call us). For example, in Fig. 4, there is a 
marked change in the oscillation of U, at 30 time steps corresponding to u, , equal 
to 2.0. Another marked change in ur occurs at 65 time steps, when u2 equals 3.0. A 
similar change occurs in u, in Fig. 5. However, the fluctuations are not so apparent 
in Figs. 6 and 7. 

In Figs. 4-7, we have indicated the rise in temperature of the second layer in the 
glass substrate by a straight line; this was because the increase was so slight that 
fluctuations were not representable on the present scale. 

Similar computations to those carried out in Section V were performed for 
a f 0 and 2b f 8, namely for the case where the heating resistor was defined to be 
smaller than the surface 0 < X, y < /, z = 0. The results were similar to those 
described in Figs. 3-7; the main difference being the variation of temperature with 
x and y at any given time in comparison with the examples described, where, for a 
particular layer, at any time, the solution was constant over that layer. 



226 MORRIS 

VI. CONCLUDING REMARKS 

It can be concluded from Tables I-III that no error growth or serious loss of 
accuracy occurs as a result of the discontinuous heat source in Eq. (1). The rapid 
response of the thin film to switching of the heat source is evident from Figs. 3-7. 
and the slower response of the glass substrate is also noticeable. It can be seen that 
for a given set of physical coefficients, a printing cycle can be determined in which 
the surface temperature of the print head can be raised above the threshold tem- 
perature of the heat sensitive paper, and in which the build up of substrate tem- 
perature can be controlled. If this printing cycle is not satisfactory in practice, then 
the components of the print head can be changed accordingly, that is, for example, 
a substrate with a higher conductivity coefficient be used. 

The equivalence of the A.D.I. and L.O.D. schemes discussed in Sections III and 
IV and confirmed by the results of Tables I and II means that the choice of scheme 
used is decided on the grounds of computational efficiency. Programming-wise, the 
A.D.I. schemes are logically simpler to use. However, the first step of the 
D’Yakonov splitting requires a considerable amount of arithmetic manipulation. 
This disadvantage is alleviated to a certain extent by Gourlay and Mitchell’s 
scheme [14] but, in choosing a particular A.D.I. scheme for this problem, we felt 
the D’Yakonov splitting was easier to programme. The L.O.D. scheme, however, 
is both efficient in computer time and is only a little more complicated to pro- 
gramme, owing to the transformations. The time taken to compute the results, using 
the L.O.D. schemes, is less than the corresponding time by the A.D.I. schemes, 
provided the solution is not printed every time step; in this situation, the need to 
alternately transform the u space to the v space and back again adds significantly 
to the time. 

It has become apparent, as a result of this study, that a problem can be con- 
sidered in two equivalent ways which give rise to two different computational 
techniques; we refer to the local and global representations of difference schemes. 
For the linear constant coefficient partial differential equation posed on a rectangu- 
lar region, the difficulty of noncommuting operators for the local scheme does not 
arise. However, in order that the schemes do not lose accuracy for time dependent 
boundary conditions, boundary corrections have to be applied. On the other hand, 
the global schemes, owing to the incorporation of boundary conditions, can give 
rise to operators which do not commute. In this case, however, the inclusion of the 
boundary conditions causes no extra trouble and hence there is no need for bound- 
ary corrections. Which scheme to use, in general, cannot be determined here. The 
particular user must consider which approach is appropriate to his own needs. We 
chose the global approach because sufficient of the operators commuted in order 
that the L.O.D. scheme in global form could be applied. 

One further point that requires emphasizing is the following. The argument of 
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the vector g,th+l,,,, contains nodal values in the u space, some of these values coming 
from the solution of Eq. (1). In this respect, it is imperative that the solution derived 
for Eq. (1) be in the u space. In our problem, this was, in fact, so; but should it not 
be so, in a case where the operators do not commute, the transformations would 
have to be applied at each time step in order to generate the solution in the u space 
for gm+l.m - 

In all the schemes considered, an accuracy of O(F + 9) has been achieved. High 
accuracy schemes of O(h4 + T”) could also be proposed; their form is obvious and, 
hence, will not be given. In agreement with the work of Bramble and Hubbard, in 
particular [2], it was found that, for the problem posed with mixed function- 
derivative boundary conditions, no increase in accuracy using the O(h4 + TV) 
schemes was attained. In order to obtain the higher accuracy, the derivative 
boundary conditions would have to be replaced by at least an O(P) accurate 
scheme. In doing this, however, the band structure of the matrices would be 
destroyed and the operators would no longer commute. Hence, for this particular 
problem, the “High Accuracy” methods are of no advantage. 

In all the numerical experiments, N was taken equal to 10 so that the print head 
was represented by a cube comprising 1000 grid points. The computation was 
carried out on an Elliott 4130 computer which contains a 64K word store. The 
programmes for this particular value of N took up most of the central store. The 
problem we were restricted to considering, owing to the large storage requirements, 
was the single element of the 5 x 5 matrix. The author claims that the results 
obtained for this problem give insight into the problem of solving the temperature 
distribution for the whole thermal print head. The justification for this is that in the 
5 x 5 matrix, the normal derivative boundary conditions imposed at the vertical 
edges of the print head are again insulation boundary conditions. The imposed 
boundary conditions at the edges of each element, of course, no longer exist, so 
that the problem is solved for the whole print head with the thin film boundary 
condition derived from the solution of the differential equations representing the 
separate elements; the boundary conditions and discontinuities being of a similar 
nature to those considered in this paper. 
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